First detection of super-Earth atmosphere

Credit: ESA/Hubble, M. Kornmesser
NASA's Hubble Space Telescope has detected hydrogen and helium, but no water vapour, in the atmosphere of 55 Cancri e – the first time the atmosphere of a "super-Earth" has been analysed successfully. For the first time, astronomers were able to analyse the atmosphere of an exoplanet in the class known as super-Earths. Using data gathered with the NASA/ESA Hubble Space Telescope and new analysis techniques, the exoplanet 55 Cancri e is revealed to have a dry atmosphere without any indications of water vapour. The results, to be published in the Astrophysical Journal, indicate that the atmosphere consists mainly of hydrogen and helium. The international team, led by scientists from University College London (UCL), took measurements of the nearby exoplanet 55 Cancri e, a super-Earth with a mass of eight Earths. It is located in the planetary system of 55 Cancri, a star about 40 light-years from Earth. Using observations made by the Wide Field Camera 3 (WFC3) on board the NASA/ESA Hubble Space Telescope, the scientists were able to analyse the atmosphere in detail. The results were only made possible by exploiting a newly-developed processing technique. "This is a very exciting result,
because it's the first time that we have been able to find the spectral fingerprints that show the gases present in the atmosphere of a super-Earth," explains Angelos Tsiaras, a PhD student at UCL, who developed the analysing technique, along with his colleagues Ingo Waldmann and Marco Rocchetto. "The observations of 55 Cancri e's atmosphere suggest that the planet has managed to cling on to a significant amount of hydrogen and helium from the nebula from which it originally formed." Super-Earths like 55 Cancri e are thought to be the most common type of planet in our galaxy. They acquired the name 'super-Earth' because they have a mass larger than that of the Earth, but are still much smaller than the gas giants in the Solar System. The WFC3 instrument on Hubble has already been used to probe the atmospheres of two other super-Earths, but no spectral features were found in those previous studies. 55 Cancri e, however, is an unusual super-Earth, as it orbits very close to its parent star. A year on the exoplanet lasts for only 18 hours and temperatures on the surface are thought to reach around 2000 degrees Celsius. Because the planet orbits its bright parent star at such a small distance, the team was able to use their new technique to extract key information about the planet, during its transits in front of the host star. Observations were made by scanning the WFC3 very quickly across the star to create a number of spectra. By combining these observations and processing them through analytic software, the researchers were able to retrieve the spectrum of 55 Cancri e embedded in the light of its parent star. "This result gives a first insight into the atmosphere of a super-Earth. We now have clues as to what the planet is currently like and how it might have formed and evolved, and this has important implications for 55 Cancri e and other super-Earths," said Giovanna Tinetti, also from UCL. Intriguingly, the data also contain hints of the presence of hydrogen cyanide, a marker for carbon-rich atmospheres. "Such an amount of hydrogen cyanide would indicate an atmosphere with a very high ratio of carbon to oxygen," said Olivia Venot, KU Leuven, who developed an atmospheric chemical model of 55 Cancri e that supported the analysis of the observations. "If the presence of hydrogen cyanide and other molecules is confirmed in a few years time by the next generation of infrared telescopes, it would support the theory that this planet is indeed carbon rich and a very exotic place," concludes Jonathan Tennyson, UCL. "Although hydrogen cyanide, or prussic acid, is highly poisonous, so it is perhaps not a planet I would like to live on!"Source: http://www.futuretimeline.net/
Read More........

How Scientists Search For Habitable Planets

Image credit: NASA/JPL-Caltech/Ames
There is only one planet we know of, so far, that is drenched with life. That planet is Earth, as you may have guessed, and it has all the right conditions for critters to thrive on its surface. Do other planets beyond our solar system, called exoplanets, also host life forms? This artist's concept shows a Super Venus planet on the left, and a Super Earth on the right. Astronomers still don't know the answer, but they search for potentially habitable planets using a handful of criteria. Ideally, they want to find planets just like Earth, since we know without a doubt that life took root here. The hunt is on for planets about the size of Earth that orbit at just the right distance from their star – in a region termed the habitable zone. NASA's Kepler mission is helping scientists in the quest to find these worlds, sometimes called Goldilocks planets after the fairy tale because they orbit where conditions are "just right" for life. Kepler and other telescopes have confirmed a handful so far, all of which are a bit larger than Earth -- the Super Earths. The search for Earth's twin, a habitable-zone planet as small as Earth, is ongoing. An important part of this research is the continuing investigation into exactly where a star's habitable zone starts and stops. The habitable zone is the belt around a star where temperatures are ideal for liquid water -- an essential ingredient for life as we know it -- to pool on a planet's surface. Earth lies within the habitable zone of our star, the sun. Beyond this zone, a planet would probably be too cold and frozen for life (though it's possible life could be buried underneath a moon's surface). A planet lying between a star and the habitable zone would likely be too hot and steamy. That perfect Goldilocks planet within the zone wouldn't necessarily be home to any furry creatures. But it would have the potential for some type of life to abound, if even microbes. In one new study, researchers based at NASA's Exoplanet Science Institute at the California Institute of Technology, in Pasadena, Calif., carefully analyzed the location of both a planet called Kepler-69c and its habitable zone. Their analysis shows that this planet, which is 1.7 times the size of Earth, lies just outside the inner edge of the zone, making it more of a Super Venus than a Super Earth, as previous estimates indicated. "On the way to finding Earths, Kepler is telling us a lot about the frequency of Venus-like planets in our galaxy," said Stephen Kane, lead author of the new paper on Kepler-69c appearing in the Astrophysical Journal Letters. To determine the location of a star’s habitable zone, one must first learn how much total radiation it emits. Stars more massive than our sun are hotter, and blaze with radiation, so their habitable zones are farther out. Similarly, stars that are smaller and cooler sport tighter belts of habitability than our sun. For example, the Super Earth planet called Kepler-62f, discovered by Kepler to orbit in the middle of a habitable zone around a cool star, orbits closer to its star than Earth. The planet takes just 267 days to complete an orbit, as compared to 365 days for Earth. Knowing precisely how far away a habitable zone needs to be from a star also depends on chemistry. For example, molecules in a planet's atmosphere will absorb a certain amount of energy from starlight and radiate the rest back out. How much of this energy is trapped can mean the difference between a turquoise sea and erupting volcanoes. Researchers led by Ravi kumar Kopparapu of Penn State University, University Park, Pa., used this type of chemical information to nudge the habitable zone out a bit farther than previously thought. The team's 2013 Astrophysical Journal study is the current gold standard in determining how a star's total radiation output relates to the location of its habitable zone. Kane and his colleagues used this information to fine-tune the boundaries of Kepler-69c's habitable zone, in addition to careful measurements of the star's total energy output and the orbit of the planet. "Understanding the properties of the star is critical to determining planetary properties and calculating the extent of the habitable zone in that system," said Kane. But before you purchase real estate in a habitable zone, keep in mind there are other factors that dictate whether a world develops lush greenery and beaches. Eruptions from the surfaces of stars called flares, for example, can wreak havoc on planets. "There are a lot of unanswered questions about habitability," said Lucianne Walkowicz, a Kepler science team member based at Princeton University, N.J., who studies flaring stars. "If the planet gets zapped with radiation all the time by flares from its parent star, the surface might not be a very pleasant place to live. But on the other hand, if there's liquid water around, that makes a really good shield from high-energy radiation, so maybe life could thrive in the oceans." Flares can also scrape off the atmospheres of planets, complicating the picture further. This is particularly true for the smaller, cooler stars, which tend to be more hyperactive than stars like our sun. Ideally, astronomers would like to know more about the atmosphere of potentially habitable planets. That way they could look at the planet's molecular makeup for signs of runaway greenhouse gases that could indicate an inhospitable Venus-like planet. Or, future space telescopes might even be able to pick up signatures of oxygen, water, carbon dioxide and methane -- indicators that the planet might be somebody's home. NASA's upcoming James Webb Space Telescope will bring us closer to this goal, by probing the atmospheres of planets, some of which may lie in habitable zones. The mission won't be able to examine the atmospheres of planets as small as Earth, so we'll have to wait for another future telescope to separate out the Venuses from the Earths. NASA Ames manages Kepler's ground system development, mission operations and science data analysis. NASA's Jet Propulsion Laboratory in Pasadena, Calif., managed Kepler mission development. Ball Aerospace & Technologies Corp. in Boulder, Colo., developed the Kepler flight system and supports mission operations with JPL at the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder. The Space Telescope Science Institute in Baltimore archives, hosts and distributes the Kepler science data. Kepler is NASA's 10th Discovery Mission and is funded by NASA's Science Mission Directorate at the agency's headquarters in Washington. More information about the Kepler mission is at http://www.nasa.gov/kepler . More information about exoplanets and NASA's planet-finding program is athttp://planetquest.jpl.nasa.gov . Contacts and sources: Whitney Clavin, Jet Propulsion Laboratory- Michele Johnson, Ames Research Center, Source: Nano Patents And Innovations
Read More........

Immense Cloud of Hydrogen Observed Bleeding From an Alien Planet

"This cloud is very spectacular, though the evaporation rate does not threaten the planet right now," explains David Ehrenreich of the Observatory of the University of Geneva in Switzerland. "But we know that in the past, the star, which is a faint red dwarf, was more active. This means that the planet evaporated faster during its first billion years of existence because of the strong radiation from the young star. Overall, we estimate that it may have lost up to 10 percent of its atmosphere over the past several billion years." Astronomers using NASA's Hubble Space Telescope have discovered an immense cloud of hydrogen dubbed "The Behemoth" bleeding from a planet orbiting a nearby star. The enormous, comet-like feature is about 50 times the size of the parent star. The hydrogen is evaporating from a warm, Neptune-sized planet, due to extreme radiation from the star. This phenomenon has never been seen around an exoplanet so small. It may offer clues to how other planets with hydrogen-enveloped atmospheres could have their outer layers evaporated by their parent star, leaving behind solid, rocky cores. Hot, rocky planets such as these that roughly the size of Earth are known as Hot-Super Earths. The planet, named GJ 436b, is considered to be a "Warm Neptune," because of its size and because it is much closer to its star than Neptune is to our sun. Although it is in no danger of having its atmosphere completely evaporated and stripped down to a rocky core, this planet could explain the existence of so-called Hot Super-Earths that are very close to their stars. These hot, rocky worlds were discovered by the Convection Rotation and Planetary Transits (CoRoT) and NASA's Kepler space telescope. Hot Super-Earths could be the remnants of more massive planets that completely lost their thick, gaseous atmospheres to the same type of evaporation. Because the Earth's atmosphere blocks most ultraviolet light, astronomers needed a space telescope with Hubble's ultraviolet capability and exquisite precision to find "The Behemoth." "You would have to have Hubble's eyes," says Ehrenreich. "You would not see it in visible wavelengths. But when you turn the ultraviolet eye of Hubble onto the system, it's really kind of a transformation, because the planet turns into a monstrous thing." Because the planet's orbit is tilted nearly edge-on to our view from Earth, the planet can be seen passing in front of its star. Astronomers also saw the star eclipsed by "The Behemoth" hydrogen cloud around the planet. Ehrenreich and his team think that such a huge cloud of gas can exist around this planet because the cloud is not rapidly heated and swept away by the radiation pressure from the relatively cool red dwarf star. This allows the cloud to stick around for a longer time. The team's findings will be published in the June 25 edition of the journal Nature. Evaporation such as this may have happened in the earlier stages of our own solar system, when the Earth had a hydrogen-rich atmosphere that dissipated over 100 to 500 million years. If so, the Earth may previously have sported a comet-like tail. GJ 436b resides very close to its star - less than 2 million miles -- and whips around it in just 2.6 Earth days. In comparison, the Earth is 93 million miles from our sun and orbits it every 365.24 days. This exoplanet is at least 6 billion years old, and may even be twice that age. It has a mass of around 23 Earths. At just 30 light-years from Earth, it's one of the closest known extrasolar planets. Finding "The Behemoth" could be a game-changer for characterizing atmospheres of the whole population of Neptune-sized planets and Super-Earths in ultraviolet observations. In the coming years, Ehrenreich expects that astronomers will find thousands of this kind of planet. The ultraviolet technique used in this study also may also spot the signature of oceans evaporating on smaller, more Earth-like planets. It will be extremely challenging for astronomers to directly see water vapor on those worlds, because it's too low in the atmosphere and shielded from telescopes. However, when water molecules are broken by the stellar radiation into hydrogen and oxygen, the relatively light hydrogen atoms can escape the planet. If scientists spot this hydrogen evaporating from a planet that is slightly more temperate and less massive than GJ 436b, it could be an indication of an ocean on the surface. The Daily Galaxy via NASA/Goddard Space Flight Center. 'Source: The Behemoth'
Read More........